
Strategy Writing in PVS

César A. Muñoz

NASA Langley Research Center
Cesar.A.Munoz@nasa.gov

PVS Class 2012

1

Cesar.A.Munoz@nasa.gov

PVS Strategies

I A conservative mechanism to extend theorem prover
capabilities by defining new proof commands, i.e.,

I User defined strategies do not compromise the soundness of
the theorem prover.

2

Fermat’s Last Theorem (Bounded Version)

Prove the following lemma:

bounded_FLT3 : LEMMA

FORALL (a,b,c:posnat):

a <= 3 AND b <= 3 and c <= 3 IMPLIES

a^3+b^3 /= c^3

I Formalize Wiles’ general proof in PVS and instantiate it to
n = 3 or

I prove each one of the 27 cases.

3

Fermat’s Last Theorem (Bounded Version)

Prove the following lemma:

bounded_FLT3 : LEMMA

FORALL (a,b,c:posnat):

a <= 3 AND b <= 3 and c <= 3 IMPLIES

a^3+b^3 /= c^3

I Formalize Wiles’ general proof in PVS and instantiate it to
n = 3 or

I prove each one of the 27 cases.

4

{-1} a <= 3

{-2} b <= 3

{-3} c <= 3

|-----

{1} a ^ 3 + b ^ 3 /= c ^ 3

Rule? (case "a=1 AND b=1 AND c=1")(flatten)

{-1} a = 1

{-2} b = 1

{-3} c = 1

...

|-----

{1} a ^ 3 + b ^ 3 /= c ^ 3

Rule? (replaces (-1 -2 -3))(eval-formula)

This completes the proof of bounded_FLT3.1.

Repeat this 26 times!

5

{-1} a <= 3

{-2} b <= 3

{-3} c <= 3

|-----

{1} a ^ 3 + b ^ 3 /= c ^ 3

Rule? (case "a=1 AND b=1 AND c=1")(flatten)

{-1} a = 1

{-2} b = 1

{-3} c = 1

...

|-----

{1} a ^ 3 + b ^ 3 /= c ^ 3

Rule? (replaces (-1 -2 -3))(eval-formula)

This completes the proof of bounded_FLT3.1.

Repeat this 26 times!

6

{-1} a <= 3

{-2} b <= 3

{-3} c <= 3

|-----

{1} a ^ 3 + b ^ 3 /= c ^ 3

Rule? (case "a=1 AND b=1 AND c=1")(flatten)

{-1} a = 1

{-2} b = 1

{-3} c = 1

...

|-----

{1} a ^ 3 + b ^ 3 /= c ^ 3

Rule? (replaces (-1 -2 -3))(eval-formula)

This completes the proof of bounded_FLT3.1.

Repeat this 26 times!

7

{-1} a <= 3

{-2} b <= 3

{-3} c <= 3

|-----

{1} a ^ 3 + b ^ 3 /= c ^ 3

Rule? (case "a=1 AND b=1 AND c=1")(flatten)

{-1} a = 1

{-2} b = 1

{-3} c = 1

...

|-----

{1} a ^ 3 + b ^ 3 /= c ^ 3

Rule? (replaces (-1 -2 -3))(eval-formula)

This completes the proof of bounded_FLT3.1.

Repeat this 26 times!

8

Strategies

Strategies enable proof scripting:

I Programatic tasks, e.g., (case "a=1 AND b=1 AND c=1"),
. . . , (case "a=3 AND b=3 AND c=3").

I Repetitive tasks, e.g., (flatten)(replaces
...)(eval-formula ...).

9

Strategy Language: Basic Steps

I Any proof command, e.g., (ground), (case ...), etc.

I (skip) does nothing.

I (skip-msg message) prints message.

I (fail) fails the current goal and reaches the next
backtracking point.

I (label label fnums) labels formulas fnums with string
label.

I (unlabel fnums) unlabels formulas fnums.

10

Strategy Language: Combinators

I Sequencing: (then step1 ...stepn).

I Branching: (branch step (step1 ...stepn)).

I Binding local variables:
(let ((var1 lisp1) ...(varn lispn)) step).

I Conditional: (if lisp step1 step2).

I Loop: (repeat step).

I Backtracking: (try step step1 step2).

11

Strategy Language: Sequencing

I (then step1 ...stepn):
Sequentially applies stepi to all the subgoals generated by
the previous step.

I (then@ step1 ...stepn):
Sequentially applies stepi to the first subgoal generated by
the previous step.

12

Strategy Language: Branching

I (branch step (step1 ...stepn)):
Applies step and then applies stepi to the i ’th subgoal
generated by step . If there are more subgoals than steps, it
applies stepn to the subgoals following the n’th one.

I (spread step (step1 ...stepn)):
Like branch, but applies skip to the subgoals following the
n’th one.

13

Binding Local Variables

I (let ((var1 lisp1) ...(varn lispn)) step):
Allows local variables to be bound to Lisp forms (vari is
bound to lispi).

I Lisp code may access the proof context using the PVS
Application Programming Interface (API).

14

Conditional and Loops

I (if lisp step1 step2):
If lisp evaluates to NIL then applies step2. Otherwise, it
applies step1.

I (repeat step):
Iterates step (while it does something) on the the first
subgoal generated at each iteration.

I (repeat* step):
Like repeat, but carries out the repetition of step along all
the subgoals generated at each iteration.∗

∗Note that repeat and repeat* are potential sources of infinite loops.

15

Backtracking

I Backtracking is achieved via (try step step1 step2).

I Informal explanation: Tries step, if it does nothing, applies
step2 to the new subgoals. Otherwise, applies step1.

I What does (try (grind) (fail) (skip)) do ?

16

Example

What does (try (grind) (fail) (skip)) do ?

I if (grind) does nothing then (skip)

I if (grind) does something (without finishing the proof) then
(skip)

I if (grind) finishes the proof, then Q.E.D.

It either completes the proof with (grind), or does nothing.

17

Writing your Own Strategies

I New strategies are defined in a file named pvs-strategies

in the current context. PVS automatically loads this file when
the theorem prover is invoked.

I The IMPORTING clause loads the file pvs-strategies if it is
defined in the imported library.

18

Strategies and Rules

Strategies can be expanded into more elementary steps.

I Some strategies have a $-form for expanding their definitions,
e.g., grind$.

I Some strategies are automatically expanded in the proof
script, e.g., repeat.

Proof commands that cannot be expanded into elementary steps
are called rules and cannot be defined by regular users.

19

Strategy Definitions

I defstep defines a strategy and its $-form:

(defstep name (parameters &optional parameters)

step

help-string format-string)

I defhelper defines a strategy that is excluded from the
standard user interface.

(defhelper name (parameters &optional parameters)

step

help-string format-string)

I defstrat defines strategy that expands automatically.

(defstrat name (parameters &optional parameters)

step

help-string)

20

Strategy Definitions

I defstep defines a strategy and its $-form:

(defstep name (parameters &optional parameters)

step

help-string format-string)

I defhelper defines a strategy that is excluded from the
standard user interface.

(defhelper name (parameters &optional parameters)

step

help-string format-string)

I defstrat defines strategy that expands automatically.

(defstrat name (parameters &optional parameters)

step

help-string)

21

Strategy Definitions

I defstep defines a strategy and its $-form:

(defstep name (parameters &optional parameters)

step

help-string format-string)

I defhelper defines a strategy that is excluded from the
standard user interface.

(defhelper name (parameters &optional parameters)

step

help-string format-string)

I defstrat defines strategy that expands automatically.

(defstrat name (parameters &optional parameters)

step

help-string)

22

Example: Finite Loop

In pvs-strategies:

(defstrat for (n step)

(if (<= n 0)

(skip)

(let ((m (- n 1)))

(then@ step (for m step))))

"Repeats step n times")

23

Using a Finite Loop

ex1 :

|-----

{1} sqrt(sq(x)) + sqrt(sq(y)) + sqrt(sq(z)) <= x+y+z

Rule? (for 2 (rewrite "sqrt_sq_abs"))

...

|-----

{1} abs(x) + abs(y) + sqrt(sq(z)) <= x+y+z

24

Example: bFLT3

{-1} a <= 3

{-2} b <= 3

{-3} c <= 3

{-4} a ^ 3 + b ^ 3 = c ^ 3

|-----

Rule? (bflt3 ...)

In pvs-strategies:

(defstep bflt3 (a b c)

...

"Checks a^3+b^3 /= c^3 for 0 < a,b,c <= 3"

"Checking a^3+b^3 /= c^3 for 0 < a,b,c <= 3")

25

(defstep bflt3 (a b c)

(let ((casestr (format nil "a=~a AND b=~a AND c=~a"

a b c)))

(spread (case casestr)

(...)))

"Checks a^3+b^3 /= c^3 for 0 < a,b,c <= 3"

"Checking a^3+b^3 /= c^3 for 0 < a,b,c <= 3")

26

(defstep bflt3 (a b c)

(let ((casestr (format nil "a=~a AND b=~a AND c=~a"

a b c)))

(spread (case casestr)

((then (flatten)(replaces (-1 -2 -3))

(eval-formula -4))

(if (< c 3) (let ((nc (+ c 1))) (bflt3 a b nc))

(if (< b 3) (let ((nb (+ b 1))) (bflt3 a nb 1))

(if (< a 3) (let ((na (+ a 1))) (bflt3 na 1 1))

(grind)))))))

"Checks a^3+b^3 /= c^3 for 0 < a,b,c <= 3"

"Checking a^3+b^3 /= c^3 for 0 < a,b,c <= 3")

27

(defstep bflt3 (a b c)

(let ((casestr (format nil "a=~a AND b=~a AND c=~a"

a b c)))

(spread (case casestr)

((then (flatten)(replaces (-1 -2 -3))

(eval-formula -4))

(if (< c 3) (let ((nc (+ c 1))) (bflt3 a b nc))

(if (< b 3) (let ((nb (+ b 1))) (bflt3 a nb 1))

(if (< a 3) (let ((na (+ a 1))) (bflt3 na 1 1))

(grind)))))))

"Checks a^3+b^3 /= c^3 for 0 < a,b,c <= 3"

"Checking a^3+b^3 /= c^3 for 0 < a,b,c <= 3")

28

(defstep bflt3 (&optional (a 1) (b 1) (c 1))

(let ((casestr (format nil "a=~a AND b=~a AND c=~a"

a b c)))

(spread (case casestr)

((then (flatten)(replaces (-1 -2 -3))

(eval-formula -4))

(if (< c 3) (let ((nc (+ c 1))) (bflt3 a b nc))

(if (< b 3) (let ((nb (+ b 1))) (bflt3 a nb))

(if (< a 3) (let ((na (+ a 1))) (bflt3 na))

(grind)))))))

"Checks a^3+b^3 /= c^3 for 0 < a,b,c <= 3"

"Checking a^3+b^3 /= c^3 for 0 < a,b,c <= 3")

29

{-1} a <= 3

{-2} b <= 3

{-3} c <= 3

{-4} a ^ 3 + b ^ 3 = c ^ 3

|-----

Rule? (bflt3)

Checking a^3+b^3 /= c^3 for 0 < a,b,c <= 3,

Q.E.D.

Run time = 0.86 secs.

Real time = 3.29 secs.

30

{-1} a <= 3

{-2} b <= 3

{-3} c <= 3

{-4} a ^ 3 + b ^ 3 = c ^ 3

|-----

Rule? (bflt3)

Checking a^3+b^3 /= c^3 for 0 < a,b,c <= 3,

Q.E.D.

Run time = 0.86 secs.

Real time = 3.29 secs.

31

References

I Documentation: PVS Prover Guide, N. Shankar, S. Owre, J.
Rushby, D. Stringer-Calvert, SRI International:
http://www.csl.sri.com/pvs.html.

I Proceedings of STRATA 2003:
http://hdl.handle.net/2060/20030067561.

I Examples:
I Manip: http:

//shemesh.larc.nasa.gov/people/bld/manip.html.
I Field: http://research.nianet.org./~munoz/Field.

I Programming: Lisp The Language, G. L. Steele Jr., Digital
Press. See, for example,
http://www.supelec.fr/docs/cltl/clm/node1.html.

32

http://www.csl.sri.com/pvs.html
http://hdl.handle.net/2060/20030067561
http://shemesh.larc.nasa.gov/people/bld/manip.html
http://shemesh.larc.nasa.gov/people/bld/manip.html
http://research.nianet.org./~munoz/Field
http://www.supelec.fr/docs/cltl/clm/node1.html

PVS Strategies are Written in Lisp

I Arbitrary Lisp expressions (functions, global variables, etc.)
can be included in a strategy file.

I PVS’s data structures are based on various Common Lisp
Object System (CLOS) classes. They are available to the
strategy programmer through global variables and accessory
functions.

33

Proof Context: Global Variables

ps Current proof state
goal Goal sequent of current proof state
label Label of current proof state
par-ps Current parent proof state
par-label Label of current parent
par-goal Goal sequent of current parent
+ Consequent sequent formulas
- Antecedent sequent formulas
new-fmla-nums Numbers of new formulas in current sequent
current-context Current typecheck context
module-context Context of current module
current-theory Current theory

34

PVS Context: Accessory Functions

I (select-seq (s-forms *goal*) fnums) retrieves the
sequent formulas fnums from the current context.

I (formula seq) returns the expression of the sequent formula
seq.

I (operator expr), (args1 expr), and (args2 expr)

return the operator, first argument, and second argument,
respectively, of expression expr.

35

PVS Context: Recognizers

Negation (negation? expr)

Disjunction (disjunction? expr)

Conjunction (conjunction? expr)

Implication (implication? expr)

Equality (equation? expr)

Equivalence (iff? expr)

Conditional (branch? expr)

Universal (forall-expr? expr)

Existential (exists-expr? expr)

Formulas in the antecedent are negations.

36

Gold Mining in PVS

I In the theorem prover the command LISP evaluates a Lisp
expression.

I In Lisp, show (or describe) displays the content and
structure of a CLOS expression. The generic print is also
handy.

37

Example

|-----

{1} sqrt(sq(x)) + sqrt(sq(y)) + sqrt(sq(z)) >= x+y+z

Rule? (lisp (show

(formula (car (select-seq (s-forms *goal*) 1)))))

sqrt(sq(x)) + sqrt(sq(y)) + sqrt(sq(z)) >= x + y + z is

an instance of #<STANDARD-CLASS INFIX-APPLICATION>:

The following slots have :INSTANCE allocation:

OPERATOR >=

ARGUMENT (sqrt(sq(x))+sqrt(sq(y))+sqrt(sq(z)),

x + y + z)

...

38

A Non-(Completely-)Trivial Example

I Assume we have a goal e1 = e2.

I Our strategy is to use an injective function f such that
f (e1) = f (e2). Then, by injectivity, f (e1) = f (e2) implies
e1 = e2.

I For instance, to prove

{-1} cos(x) > 0

|-----

{1} sqrt(1 - sq(sin(x))) = cos(x)

we square both sides formula {1}, i.e., f ≡ sq.†

†The function sq is injective for non-negative reals.

39

both-sides-f

(defstep both-sides-f (f &optional (fnum 1))

(let ((eqs (get-form fnum)))

(if (equation? eqs)

(let ((case-str (format nil "~a(~a) = ~a(~a)"

f (args1 eqs)

f (args2 eqs))))

(case case-str))

(skip)))

"Applies function F to both sides of equality FNUM"

"Applying ~a to both sides of ~a")

(defun get-form (fnum)

(formula (car (select-seq (s-forms *goal*) fnum))))

40

Using both-sides-f

Rule? (both-sides-f "sq")

Applying sq to both sides of 1,

this yields 2 subgoals:

ex2.1 :

{-1} sq(sqrt(1 - sq(sin(x)))) = sq(cos(x))

[-2] cos(x) > 0

|-----

[1] sqrt(1 - sq(sin(x))) = cos(x)

ex2.2 :

[-1] cos(x) > 0

|-----

{1} sq(sqrt(1 - sq(sin(x)))) = sq(cos(x))

[2] sqrt(1 - sq(sin(x))) = cos(x)

41

